
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FULLY DYNAMIC CORESET SPECTRAL CLUSTERING

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a fully dynamic data structure that supports edge and node updates and
cluster membership queries for spectral clustering with strong theoretical guaran-
tees. Furthermore, our data structure outperforms the state of the art significantly
on real world datasets. At the heart of our data structure is the novel notion of
Just-in-Time Sampling Trees.
The worst-case edge update time of our data structure is O(log n) and the worst-
case query time is O(d2max log

3(n) + vol(Y)) where dmax is the maximum degree
of the current graph and vol(Y) is the sum of the unweighted degrees of all nodes in
Y . Assuming dmax is polylogarithmic, as is the case with many sparse real-world
graphs, our method achieves the best known trade-off between query time and
update time.

1 INTRODUCTION

Clustering large-scale graphs is central to understanding the structure of modern data, but real-world
graphs are rarely static. Social interactions, communication patterns, and information flows evolve
continuously, rendering static clustering methods inadequate. To capture these changing structures,
we need algorithms that can efficiently adapt to dynamic graphs while preserving the theoretical and
practical strengths of spectral clustering.

Among the many approaches to graph clustering, spectral clustering has stood out for its ability to
uncover complex, non-linear structures in data. Closely related methods such as kernel k-means share
this strength, and together they have found wide application across domains ranging from medical
research to network science (Gönen & Margolin, 2014; Kuo et al., 2014; White & Smyth, 2005).
These successes make spectral methods a natural starting point when extending clustering algorithms
to the dynamic setting.

Given a Euclidean dataset X , both kernel k-means and spectral clustering rely on a kernel similarity
function K : X × X → R≥0, often represented as an n × n matrix, where n = |X|. Spectral
clustering interprets this matrix as the adjacency matrix of a similarity graph and seeks to minimise
the normalised cut objective (defined in Appendix A) (Von Luxburg, 2007). In contrast, kernel
k-means leverages the fact that the kernel implicitly defines an embedding ϕ : X → H into a Hilbert
space, with

⟨ϕ(x), ϕ(y)⟩ = K(x, y), ∀x, y ∈ X. (1)

The clustering problem is then to minimise the k-means objective in this space, typically solved using
a kernelized version of Lloyd’s algorithm (Dhillon et al., 2004).

A key observation, due to Dhillon et al. (2004), is that the normalised cut and kernel k-means
objectives are equivalent up to constant factors when written as trace minimisation optimisation
problems. In particular, optimising the normalised cut on a graph G(V,E) can be reformulated as an
instance of kernel k-means with a suitable kernel, which we refer to as the graph kernel (Definition 3).
The other direction also holds; any kernel k-means instance can be reformulated as a normalised cut
instance. This duality establishes a deep connection between the two approaches.

Despite this equivalence, the two methods have historically been studied in isolation, with algorithmic
advances developed separately for each. A recent result by Jourdan et al. (2025) showed how to bridge

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

this gap: they introduced the first coreset1 spectral clustering algorithm. This algorithm clusters a
coreset graph (an edge reweighted induced subgraph) to infer a good labelling of the original graph
by exploiting the equivalence with kernel k-means. Their analysis moves between graph space and
kernel space, yielding a framework where a coreset for kernel k-means can be used to accelerate
spectral clustering—achieving significant speed-up when the coreset is small. We summarize their
result informally below (with full details deferred to Appendix A).

Theorem 1 (Jourdan et al. (2025) (informal)). Given a weighted graph G and a coreset S for the
graph kernel of G, normalised cut on G with k clusters can be solved in time TSC(|S|, k) +O(k4) +
O(n · davg), where TSC(|S|, k) is the running time of spectral clustering on the coreset with k
clusters and davg is the average (unweighted) degree of G. Furthermore, if we require the cluster
labels only for a set Y ⊆ X , the running time becomes TSC(|S|, k) +O(k4) +O(vol(Y)), where
vol(Y) is the sum of unweighted degrees of all nodes in Y .

Dynamic clustering Before we state our results, let us intuitively define the dynamic clustering
problem. Given a dynamic weighted graph G = G1, G2, ... (this sequence can be either finite or
infinite) where Gi, Gi+1 only differ by at most a single edge, our goal is to maintain a data structure
that supports the following operations: edge insertions and deletions2, and querying the cluster
memberships of a set of points; given a set Y ⊆ X and parameter k, we return for every x ∈ Y a
cluster in {1, . . . , k}. The goal is to design a data structure where both the edge updates and cluster
queries are as fast as possible while maintaining a good quality of clustering (see Section 5 for details
of how this is measured). Note that graph parameters such as the number of nodes, number of edges,
average degree and maximum degree are not fixed throughout the evolution of the graph. When
stating these values, they always refer to a specific Gi, and this i should be clear from context. For
example, if an edge update time is O(log n) then n refers to the number of nodes at the time of the
update.

We note that Theorem 1 implies a framework for dynamic spectral clustering. Given a dynamic graph,
if we can dynamically maintain a coreset, S, for the graph kernel, we would have a natural dynamic
algorithm for spectral clustering with query time TSC(|S|, k) + O(k4) + vol(Y) for a node set Y .
While we present the results of Jourdan et al. (2025) in Appendix A for completeness, in the main
body of the paper we focus on dynamically maintaining a coreset for the graph kernel.

1.1 OUR RESULTS

We present a fully dynamic data structure for spectral clustering, which is significantly faster compared
to existing approaches. Our data structure builds upon the static algorithm of Jourdan et al. (2025).
We briefly outline their results. The heart of the static coreset algorithm repeatedly samples a subset
of nodes according to two adaptive distributions. By adaptive, we mean that the sampling distribution
changes during sampling. To construct the coreset, they first sample an auxiliary set of nodes
according to one adaptive distribution. Then, they sample the final coreset according to the other
distribution, derived from the sampled auxiliary set. To allow for efficient sampling, a sampling tree
is used. This is a data structure that is constructed once before the coreset algorithm is executed, and
is updated throughout the execution of the algorithm (to support the adaptive nature of the sampling).
The initial construction time of the sampling tree is linear in the size of the input; rebuilding a
sampling tree from scratch in the dynamic setting is prohibitive.

Our approach Adapting this algorithm directly to the dynamic setting would require reconstructing
the sampling tree for every change in the input graph, taking linear time. Instead, we design a dynamic
data structure to maintain the sampling tree under edge insertions and deletions. This allows us to
achieve a logarithmic update time per edge update. To query clusters, we 1) use the tree to quickly
sample a coreset, recall that the coreset is tiny compared to the full graph, 2) cluster the coreset,
and 3) use the coreset clusters to determine the cluster memberships of the query nodes. Jourdan
et al. (2025) maintain the probabilities in the sampling trees explicitly, which does not allow for
efficient updates when the graph changes. A naive attempt would require updating all the nodes in
the sampling tree after every update, which takes linear time. We take a different approach.

1A coreset is a small, weighted subset of the input that approximates the original dataset with respect to a
given objective up to a multiplicative factor close to 1.

2Node insertions and deletions are also supported implicitly; inserting (u, v) will add a node if either u or v
is not already in the graph, and removing all edges adjacent to a node v removes it from the graph.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Instead of maintaining the probabilities directly in the sampling tree, each node maintains auxiliary
quantities which allow us to quickly compute the sampling probabilities on demand. Our approach is
significantly faster both in theory and in practice on sparse graphs. We compare our data structure to
other dynamic approaches and naive baselines in Table 1. Naive and Static both maintain a dynamic
graph using hash maps to allow for fast edge insertions and deletions. When queried, Naive simply
runs the full spectral clustering algorithm on the entire graph and returns the node cluster. Static
uses coreset spectral clustering instead (Jourdan et al., 2025). We also compare to the dynamic
spectral clustering data structure of Laenen & Sun (2024), which only supports edge additions, but
not deletions, and the Merge&Reduce data structure that combines the merge and reduce framework
of Henzinger & Kale (2020) with the static coreset algorithm of Jourdan et al. (2025). The Naive
and Static approaches achieve very fast edge update times, but their node query time is prohibitively
slow. Merge&Reduce is the only data structure to achieve a competitive query time compared to our
approach, however its edge update time is prohibitively slow in practice. We observe experimentally
that our edge update time is much faster than Merge&Reduce while the query time is similar for large
graphs.

Algorithms Edge Update Time Query Time for set Y ⊆ V

Ours O(log n) O(d2max log
3 n+ vol(Y))

Laenen & Sun (2024) O(1) amortised O(n/ log n) amortised
Merge&Reduce O(log7(n)) O(log8 n+ vol(Y))
Naive O(1) amortised O(n · davg log n)
Static O(1) amortised O(n · log3 n)

Table 1: Comparison of data structures in terms of edge update and node set query time, omitting
log log n factors. We assume k is a constant for clarity (see Table 2 in Appendix B for the dependence
in k). Unless stated otherwise, running times are worst-case. The values n, dmax, davg, vol(Y) are
the number of nodes, maximum degree, average degree and volume of Y w.r.t the dynamic graph at
the time of edge update / node set query. vol(Y) is the sum of unweighted degrees of all nodes in Y .

Our result is significant because we are able to efficiently maintain a dynamic coreset whose size
doesn’t depend on even logarithmic factors of n, while achieving superior worst-case running times
compared to existing dynamic data structures. By the nature of the Merge&Reduce method, the
coreset size for Merge&Reduce must incur at least a polylogarithmic dependence on n.
Theorem 2 (Main result (informal)). There exists a dynamic data structure for normalised cut that
supports edge insertions and deletions and has an edge update time of O(log n) and a set query time
of O(d2max log

3 n+ vol(Y)).

Paper structure We review related work in Section 1.2. In Section 2 we define notation and
provide formal definitions. In Section 3 we overview the static coreset algorithm of Jourdan et al.
(2025), setting the groundwork for our dynamic data structure. In Section 4 we present our dynamic
coreset spectral clustering data structure. In Section 5 we experimentally evaluate our data structure
against all data structure in Table 1.

1.2 RELATED WORK

Prior dynamic spectral clustering methods (Dhanjal et al., 2014; Martin et al., 2018; Ning et al., 2007)
largely track changes of approximate eigenvectors under perturbations, typically without explicit
approximation guarantees for the returned clusters and often with a fixed vertex set. The state of the
art for the incremental setting is due to Laenen & Sun (2024): it considers insertions only (edges and
possibly new vertices), and assumes a dynamic gap / cluster-structure condition—roughly, that at
designated times the graph admits well-separated k′ clusters while each update is an edge insertion
introducing at most one new vertex. Under these assumptions, they achieve O(1) amortised update
and near linear3 amortised query time with provable approximation guarantees for the output clusters.

In (Henzinger & Kale, 2020) a generic approach for turning static coresets into dynamic coresets
is presented. This is applied to k-means, followed by both practical and theoretical improvements

3Strictly speaking, the amortised query time is O(n/ logn) where n is the number of nodes at query time.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(Henzinger et al., 2024; la Tour et al., 2024). Recently, Jourdan et al. (2025) showed how to use
coresets together with the equivalence between Kernel k-means and spectral clustering (Dhillon
et al., 2004) to design a Coreset Spectral Clustering algorithm—achieving the same approximation
guarantees as spectral clustering (up to a small multiplicative error). This combined with the results
of Henzinger & Kale (2020) gives rise to a dynamic spectral clustering data structure that supports
both edge additions and deletions. This results in a polylogarithmic update time and a sublinear
query time, while maintaining the approximation guarantees of Jourdan et al. (2025).

2 PRELIMINARIES

Let X be a set of n objects, and K : X ×X → R≥0 be a function measuring the pairwise similarity
of data points in X . Let ϕ : X → H be the function implicitly defined by K that maps data
points in X to the unique Hilbert space such that ⟨ϕ(x), ϕ(y)⟩ = K(x, y) for all x, y ∈ X . The
function K is usually represented as a positive semi-definite matrix: if Φ = [ϕ(x1), . . . , ϕ(xn)], then
K = ΦTΦ ∈ Rn×n with Kij = ⟨ϕ(xi), ϕ(xj)⟩. Let ∆(x, y) ≜ ∥ϕ(x)− ϕ(y)∥2 denote the squared
distance in feature space for all x, y ∈ X , and ∆(x,C) = minc∈C ∆(x, c) denote the smallest
squared distance from x ∈ X to a set C ⊆ X . We refer to the diagonal elements of K as self
similarities and say x is a neighbour of (or incident to) y, written x ∼ y, iff ⟨ϕ(x), ϕ(y)⟩ ≠ 0. If
x ∈ X and S ⊂ X , we say x is incident to S if and only if x is incident to at least one element of S.

We make use of the following concepts in our analysis.

Definition 1 (kernel k-means objective). Given a weighted dataset X with weights w : X → R+

and feature map ϕ : X → H satisfying equation 1 for some kernel function K, the weighted
kernel k-means objective with respect to an arbitrary set of points C ⊆ H is COSTw(X,C) =∑

x∈X w(x)∆(x,C).

Definition 2 (ε-coresets). For 0 < ε < 1, an ε-coreset for kernel k-means on a weighted dataset
X with weights w : X → R+ is a reweighted subset S ⊆ X such that for the Hilbert spaceH and
map ϕ : X → H satisfying equation 1, we have COSTw′(S,C) ∈ (1± ε) · COSTw(X,C), ∀C ⊂
H with |C| = k. where w′ : S → R+ gives the weight for each element in the coreset.

Definition 3 (Graph kernel, (Dhillon et al., 2007)). Given a graph with positive edge weights, graph
G = (V,E), k with adjacency matrix A and degree matrix D let K = D−1AD−1 + σD−1 and
W = D, where σ is chosen such that K is positive definite. We call (K,W) the graph kernel for G.
We say that a reweighted subset V ′ ⊆ V is an ε-coreset for the graph kernel of G if its an ε-coreset
for kernel matrix K and weight matrix W . The diagonal entries of W correspond to the values of
w in Definition 1. We refer to the edge weight between two nodes in G as w(x, y). If x ∼ y then
w(x, y) > 0, otherwise w(x, y) = 0.

Definition 4 (Seed sets and seed set weight). Let X be a set of points with weights w : X → R≥0

and C ⊆ X be a set of seeds. Then for any x ∈ X , we define the seed set of x with respect to C
to be the points in X that share the same closest seed as x. That is, we define the seed set of x
with respect to C to be C(x) ≜ {y ∈ X| argminc∈C ∆(x, c) = argminc∈C ∆(y, c)} where ties are
broken arbitrarily. We define the weight of a seed set to be the sum of the weight of the points in the
seed set. That is, w(C(x)) ≜

∑
y∈C(x) w(y).

3 STATIC CSC

Given an input graph, the framework of Jourdan et al. (2025) first extracts the corresponding weighted
kernel k-means problem via the equivalence to the normalised cut problem, and then constructs an
ε-coreset. Following this, again via the equivalence, they solve the corresponding normalised cut
problem on the coreset graph to get the coreset partition. Finally, they label the rest of the data
by considering kernel distances to the implied centers induced by the coreset graph partition. A
full description of their algorithm, accompanied by an intuitive illustration (Figure 3), appears in
Appendix A. Going forward we focus on the coreset construction at the heart of their algorithm.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The algorithms of Jourdan et al. (2025) use the following notation. For dataset X and seed set C ⊆ X ,
for x ∈ X , and S ⊆ X , we define the following:

f(x,C) ≜ w(x)∆(x,C), f(S,C) ≜
∑
z∈S

f(z, C),

g(x,C) ≜
f(x,C)

f(X,C)
+

w(x)

w(C(x))
, g(S,C) ≜

∑
z∈S

g(z, C).

Intuitively, f(x,C) is the weighted distance between x and C in feature space, g(x,C) is the sum
of the relative weight of x w.r.t. its seed set

(
w(x)

w(C(x))

)
and the relative weighted distance of x to C

w.r.t. all points
(

f(x,C)
f(X,C)

)
.

Constructing Coresets The ε-coreset Algorithm of Jourdan et al. (2025) is based on the algorithm
of Jiang et al. (2024), augmented for sparse graphs (Algorithm 1). It consists of multiple rounds of
importance sampling that progressively reduce the size of the input. Each round seeds the importance
of each point using the distribution given by running D2-sampling (Algorithm 3), and then smoothing
this distribution according to the weight of the point, normalised by the weight of its seed set (line 4
of Algorithm 2).

Each round approximately reduces the number of unique elements to be logarithmic in the number of
unique elements in the previous round until the number of unique elements does not decrease. In
practice, one round is usually enough.

Sampling Trees To implement the sampling in Algorithm 3 efficiently for a graph kernel, Jourdan
et al. (2025) make use of sampling trees (Wong & Easton, 1980). Sampling trees provide an efficient
way to sample elements from a set X according to some unnormalised distribution as well as updating
the distribution. A sampling tree is a balanced tree where the leaves correspond to elements of X and
internal nodes correspond to the union of their children. For sampling, leaves store unnormalised
probabilities and internal nodes store the sums of their children’s unnormalised probabilities. For
more details, refer to Appendix C.

Algorithm 1 ε-coreset for kernel k-means on dataset X with kernel K (Jiang et al., 2024)

1: Input: X0 ← X , i← 0
2: repeat
3: i← i+ 1 and εi ← ε/(log(i) ∥X0∥0)1/4 ▷ log(i)(·) is the ith iterated logarithm.
4: Xi ← IMPORTANCE-SAMPLING(Xi−1, εi) ▷ Algorithm 2
5: until ∥Xi∥0 does not decrease compared to ∥Xi−1∥0
6: return Xi

Algorithm 2 Importance-Sampling(X, ε)

1: Let C∗ ← D2-Sampling(X) ▷ Alg. 3
2: ∀x ∈ X,σx ← g(x,C∗)
3: ∀x ∈ X, px ← σx∑

y∈X σy

4: Draw N ← O
(

k2 log2(k) log(∥X∥0)
ε4

)
i.i.d.

samples from X , using probabilities (px)x∈X

5: Let D be the sampled set; for each x ∈ D let
wD(x)← w(x)

pxN

6: return weighted set D

Algorithm 3 Modified D2-Sampling(X)

1: x∗ ← argminx∈X⟨ϕ(x), ϕ(x)⟩
2: C ← {x∗}
3: Draw x ∈ X uniformly at random
4: C ← C ∪ {x}
5: for i = 1, . . . , k − 1 do
6: Draw x ∈ X , using probabilities f(x,C)

f(X,C)

7: C ← C ∪ {x}
8: return C

As written, it appears that sampling proportional to σx on line 2 of Algorithm 2 requires us to
recompute a full sampling tree every time we build a coreset, since σx depends on C∗ which is the
output of Algorithm 3. To overcome this, we build a unified data structure that fuses Algorithm
2 and Algorithm 3 so that we can quickly sample proportional to σx, under updates to the graph.
This will correspond to maintaining a single sampling tree for f(x, {x∗}) and g(x, {x∗}) where x∗

is the node in the graph with highest degree. Sampling the rest of C in Algorithm 3 can then be
performed quickly. As we sample the rest of C, we efficiently update the sampling tree to respect

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

f(x,C) and g(x,C) after every new point is added to C. We use timestamps to lazily reset the state
of the sampling tree when we begin each query.

4 JUST-IN-TIME SAMPLING TREES FOR DYNAMIC GRAPH KERNEL CORESETS

We want to maintain a sampling tree and associated data structures so that we can quickly run a fused
version of Algorithm 2 and Algorithm 3. We must be able to efficiently sample from and update the
sampling tree according to the following un-normalised distributions: 1) f(x,C) = w(x) ·∆(x,C),
line 6 of Algorithm 3, 2) g(x,C∗) = w(x)·∆(x,C∗)

COSTw(X,C∗) + w(x)
w(C∗(x)) , line 2 of Algorithm 2.

Naively, we could try to build and maintain a sampling tree where leaf nodes store f(x, {x∗}) or
g(x, {x∗}) and internal nodes store the sum of their children. Then, when we need to compute a
coreset, we simulate D2-sampling by updating the tree to compute intermediate values of f(S,C)
and g(S,C). However, as seeds are added to the set C in Algorithm 3 or edges are added or removed
from the graph, a linear number of values in the sampling tree may need to be changed. For example,
after a series of edge updates, the node with highest degree x∗ may change, which would require a
contribution update for every leaf in the tree, taking linear time.

Instead of storing and updating values derived from f(x, {x∗}) or g(x, {x∗}) directly, each node
will store and update values that can be used indirectly to compute them in a just-in-time manner.
Only when actually sampling from the tree will the values of internal nodes be computed. Of the
values that we do store, only O(log n) updates to the sampling tree are required under graph updates
and only (d2max log n) updates are required to simulate a single iteration of D2-sampling.

Maintaining f(S, {x∗}) and g(S, {x∗}) just-in-time under graph updates. Let G = (V,E,w)
be an undirected graph on n vertices after a sequence of edge insertions/deletions and let the (dynamic)
kernel matrix be K = D−1AD−1 + σD−1 and W = D where σ is a parameter set to make sure K
is positive definite (Definition 3). Accordingly, for any x, y ∈ X , we have that

⟨ϕ(x), ϕ(x)⟩ = K(x, x) =
σ

deg(x)
, ⟨ϕ(x), ϕ(y)⟩ = K(x, y) =

w(x, y)

deg(x) deg(y)
.

To quickly run a fused version of Algorithms 2 and 3 in the presence of edge updates, we maintain
a sampling tree whose nodes, each representing a set S ⊆ X , can quickly compute f(S, {x∗})
and g(S, {x∗}). This can be thought of as maintaining f(S, {x∗}) and g(S, {x∗}) up to line 2 in
Algorithm 3. To maintain x∗ itself, we use a max-heap over the degrees of the vertices in G since x∗

corresponds to a node with maximal degree, regardless of the value of σ. In Sections 4.1 and 4.2,
we will see what each node in the sampling tree actually needs to maintain to compute f(S,C) and
g(S,C) just-in-time as C grows with each iteration of Algorithm 3, starting with C = {x∗}.

4.1 COMPUTING f(S,C) JUST-IN-TIME

Now assume that x∗ has been added to the seed set C in line 2 of Algorithm 3. Then, for any x ∈ X ,
we can derive the following expression for f(x,C) in terms of C.

f(x,C) =

{
w(x)⟨ϕ(x), ϕ(x)⟩+ w(x)⟨ϕ(x∗), ϕ(x∗)⟩ x ̸∼ C

w(x)⟨ϕ(x), ϕ(x)⟩+ w(x)minc∈C

(
⟨ϕ(c), ϕ(c)⟩ − 2⟨ϕ(x), ϕ(c)⟩

)
x ∼ C

=

σ + deg(x)
(

σ
deg(x∗)

)
x ̸∼ C

σ + deg(x)minc∈C

(
σ

deg(c) − 2 w(x,c)
deg(x) deg(c)

)
x ∼ C

(2)

with the relation that for all x ∈ X and C ⊂ X where x∗ ∈ C it holds that

f(x,C ∪ {y}) =

{
f(x,C) x ̸∼ y

min
(
f(x,C), w(x)∆(x, y)

)
x ∼ y

(3)

Easy case. Suppose S ⊂ X is a set such that for all x ∈ S, we have x ̸∼ C. That is, none of the
nodes represented by S have any edges to nodes in C. This corresponds to every point being in the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

first case of (2). Accordingly, we get the following expression for f(S,C):

f(S,C) =
∑
x∈S

f(x,C) =
∑
x∈S

[
σ + deg(x)

(σ

deg(x∗)

)]
= σ |S|+ σ

deg(x∗)

∑
x∈S

deg(x) (4)

From (4), it’s clear that each node in the sampling tree should maintain |S| and
∑

x∈S deg(x). If
each node maintains this information, then given an arbitrary value of σ and choice of x∗, it can
successfully compute f(S,C) according to (4) in constant time. Crucially, both terms decompose
linearly; suppose S ⊆ X is represented by a node L in the sampling tree and U, V form a partition
of S and are represented by the child nodes of L. Then the values of |S| and

∑
x∈S deg(x) can

be computed by summing these values for U and V . As such, maintaining this information in the
sampling tree under edge updates can be accomplished in O(log n) time.

General case. For S ⊂ X which contain nodes with edges to C, we track the difference between
the expression in (4) and the true value of f(S,C). To do this, we decompose f(S,C) into a base
part, f b(S) corresponding to the situation where there are no edges to C, and a delta term fδ(S,C),
which stores the difference to the true value of f(S,C). For all x ∈ X and S ⊆ X , we define,

f b(x) ≜ σ + deg(x)
(σ

deg(x∗)

)
, f b(S) ≜

∑
x∈S

f b(x),

fδ(x,C) ≜ f b(x)− f(x,C), fδ(S,C) ≜
∑
x∈S

fδ(x,C).

From the definitions, we have that for any S ⊆ X

f b(S)− fδ(S,C) =
∑
x∈S

f b(x)−
(
f b(x)− f(x,C)

)
=

∑
x∈S

f(x,C) = f(S,C). (5)

Accordingly, we need to store and update fδ(S,C) for every internal node of the sampling tree.

Maintaining fδ(S,C). When we begin Algorithm 3, all the delta terms will initially be zero. Every
time we add a node y to the seed set C, from (3), it suffices to check whether f(x, {y}) < f(x,C)
for any neighbour in {x ∈ X|x ∼ y}. For those neighbours where f(x, y) < f(x,C), we update
their respective delta terms in the leaves of the sampling tree:

fδ(x,C ∪ {y}) = f b(x)− f(x, y), (6)

and we add the difference in delta term to every internal node’s delta term along the path from the
leaf node representing x to the root of the sampling tree:

fδ(S,C ∪ {y}) = fδ(S,C) +
(
fδ(x,C ∪ {y})− fδ(x,C)

)
. (7)

Since we sample k seeds in Algorithm 3, each with at most dmax neighbours, the running time to
maintain f(x,C) while simulating a single round of Algorithm 3 is O(k · dmax log n).

Logical Timestamps for stale delta terms. As stated, we will need to reset all the non-zero delta
terms to zero before running Algorithm 3 again for the next query. While this would only incur a
constant factor in the running time, we can use a simple trick to avoid this. We maintain a global
logical timestamp T that we increment before starting Algorithm 3 and also store timestamps at every
node in the sampling tree. When we try to read a delta term, if that node’s timestamp doesn’t match
T , the delta term is stale so we reset it to zero and update the timestamp for that node. Otherwise we
read the value as is. This ensures that we forget about delta terms from previous calls to Algorithm 3.

4.2 COMPUTING g(S,C) JUST-IN-TIME

The difficulty with computing the g(x,C) terms is w(C(x)), Definition 4, in the denominator
of w(x)

w(C(x)) in the definition of g(x,C). Recall that C(x) = {y ∈ X| argminc∈C ∆(x, c) =

argminc∈C ∆(y, c)} is the seed cluster that x belongs to, and w(C(x)) =
∑

y∈C(x) w(y) is the
weight of the seed cluster that x belongs to. Initially, after line 2 of Algorithm 3, for all x ∈ X , we
have C(x) = C(x∗) = X and w(C(x)) = w(C(x∗)) =

∑
y∈X w(y). This is because there is only

one seed, x∗ in C. As more seeds are added to C, points in C(x∗) will move to different seed clusters

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

and so w(C(x∗)) will decrease. Likewise, vertices in other seed sets may also move to newer seed
sets. As a result, the addition of a new seed may affect the denominator of w(x)

w(C(x)) for potentially
Ω(n) terms. We need a way of managing this efficiently, similarly to the case for the f(x,C) terms.
We do this by having every node in the sampling tree track a decomposition of

∑ w(x)
w(C(x)) over the

vertices that they represent. To aid our decomposition, we use the following notation. For any x ∈ X
and S ⊆ X , define

h(x,C) ≜
w(x)

w(C(x))
, h(S,C) ≜

∑
y∈S

w(y)

w(C(y))
, (8)

hb(x,C) ≜

{
w(x) x ∈ C(x∗)

0 x ̸∈ C(x∗),
hb(S,C) ≜

∑
x∈S

hb(x,C) =
∑

x∈S∩C(x∗)

w(x), (9)

hs(x,C) ≜

{
0 x ∈ C(x∗)

w(x)
w(C(x)) x ̸∈ C(x∗),

hs(S,C) ≜
∑
x∈S

hs(x,C) =
∑

x∈S∩(X\C(x∗))

w(x)

w(C(x))

(10)

The decomposition is then h(x,C) = hb(x,C)
w(C(x∗)) + hs(x,C), so that

g(x,C) =
f(x,C)

f(X,C)
+ h(x,C) =

f(x,C)

f(X,C)
+

hb(x,C)

w(C(x∗))
+ hs(x,C), (11)

g(S,C) =
f(S,C)

f(X,C)
+ h(S,C) =

f(S,C)

f(X,C)
+

hb(S,C)

w(C(x∗))
+ hs(S,C) (12)

Given this decomposition of g(S,C), it suffices to maintain w(C(x∗)) outside of the sampling tree
and have every node maintain hb(S,C) and hs(S,C). We additionally maintain a hashmap that
maps vertices to their seed set and a hashmap mapping seeds to their seed cluster weight. Here,
logical timestamps will be crucial to efficiently update these terms and the hashmap. By decoupling
w(C(x∗)) from hb(S,C), we avoid the large number of sampling tree updates that would have been
required when each seed is added to C without the decoupling.

Maintaining hb(S,C) and hs(S,C). After Algorithm 3 selects x∗ in line 2, all the hb(S,C) terms
will initially be

∑
x∈S deg(x), which we already track to compute f(S,C), and all the hs(S,C)

terms will be zero. Additionally, we maintain a hashmap from X to seeds which starts with every
node in X mapped to x∗. Again we can use timestamps to avoid having to reset this map across
queries. Finally we maintain a hashmap from seeds to seed set weights which initially just contains
x∗ →

∑
x∈X w(x).

From (3), when we add a seed point y to C, the only points which can change seed cluster are y
and its neighbours, {y} ∪ {x ∈ X|x ∼ y}. Therefore, we need to update hb(x,C) and hs(x,C) for
the leaves corresponding to these vertices as well as hb(S,C) and hs(S,C) for every internal node
along the paths from these leaves to the root. Moreover, let D be the set of seeds which lose at least
one point to the new seed set. That is, let D = {c ∈ C| |C(c)| > |(C ∪ {y})(c)| , c ̸= x∗}. Since
the weight of the corresponding seed sets decrease, for every c ∈ D, for every x ∈ C(c), we will
need to update hs(x,C), and propagate the difference through the internal nodes along the path to
the root. Since the number of points in a seed set other than C(x∗) is at most dmax and each seed has
at most dmax neighbours, after adding a seed to C, the time to update the hb and hs values in the tree
is O(d2max log n). We give pseudocode for our dynamic coreset data structure, Data Structure 1, in
Appendix D. It has edge update time of O(log n) and coreset query time of O(d2max log

3(n)) time.

5 EXPERIMENTS

We perform extensive experiments on a system with an AMD Ryzen 9 7950X 16-Core Processor and
128GB of DDR5 4800MHz RAM. We compare our dynamic CSC data structure against the following
baselines: 1) Naive spectral clustering, 2) the static CSC algorithm (Jourdan et al., 2025), 3) LS24
(Laenen & Sun, 2024), 4) Merge&Reduce (Henzinger & Kale, 2020). Following the experiments of
Laenen & Sun (2024), we compare these algorithms on real-world and synthetic workloads. Every

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

workload consists of a number of batches of edge insertions or deletions, each followed by a query to
get the current partition of the full graph. The details of each workload can be found in Appendix E.
In the interest of fairness, we disable any internal buffering so that each edge insertion/deletion is
handled one at a time. We record the quality of each query with ARI (Rand, 1971), the time taken to
process each batch, and the time taken to process the query and label the current graph. Following
Jiang et al. (2024), we use a single round of importance sampling for the coreset algorithms (ours,
static CSC, and Merge&Reduce). The full details of each data structure’s parameters can be found in
the supplementary material.

Discussion Figure 1 shows the results on our workloads. Data structures were omitted from
experiments if runs took longer than 20,000 seconds. Figure 2 shows a running time comparison
between static CSC and ours. All data structures achieve similar ARIs but the edge update and
query times vary wildly. With respect to edge update time, LS24 and Merge&Reduce were orders of
magnitude slower compared to the other data structures, and could not be run on the larger experiments
without taking longer than 20,000 seconds. With respect to query time, our data structure was orders
of magnitude faster than the Naive data structure on larger experiments such as EMNIST while being
competitive with LS24 and Merge&Reduce on the smaller experiments. In the comparison against
the static algorithm, the query time of the static algorithm increases at a much greater rate compared
to our data structure as the experiment progresses, taking ten times longer per query by the end.

Figure 1: Results on mixed workloads. Shaded regions show standard deviation over 10 runs. Log
scales are used when values cross multiple magnitudes.

Figure 2: Runtime comparison between the static CSC algorithm and ours on an instance of
SPLIT_CLUSTERS with k = 50 and n = 2500. Sampling from the same distribution, our dynamic
data structure achieves the same ARI as the static algorithm. Shaded regions show standard deviation
over 10 runs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. Emnist: Extending mnist
to handwritten letters. In 2017 International Joint Conference on Neural Networks (IJCNN), pp.
2921–2926, 2017. doi: 10.1109/IJCNN.2017.7966217.

Charanpal Dhanjal, Romaric Gaudel, and Stéphan Clémençon. Efficient eigen-updating for spectral
graph clustering. Neurocomputing, 131:440–452, 2014.

Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means: spectral clustering and
normalized cuts. In 10th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD’04), pp. 551–556, 2004.

Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without eigenvectors a
multilevel approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(11):
1944–1957, 2007.

Mehmet Gönen and Adam A Margolin. Localized data fusion for kernel k-means clustering with
application to cancer biology. In 27th Advances in Neural Information Processing Systems
(NeurIPS’14), 2014.

Monika Henzinger and Sagar Kale. Fully-dynamic coresets. In ESA, volume 173 of LIPIcs, pp.
57:1–57:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

Monika Henzinger, David Saulpic, and Leonhard Sidl. Experimental evaluation of fully dynamic
k-means via coresets. In ALENEX, pp. 220–233. SIAM, 2024.

Shaofeng H.-C. Jiang, Robert Krauthgamer, Jianing Lou, and Yubo Zhang. Coresets for kernel
clustering. Machine Learning, 113(8):5891–5906, 2024.

Ben Jourdan, Gregory Schwartzman, Peter Macgregor, and He Sun. Coreset spectral clustering. In
The Thirteenth International Conference on Learning Representations, 2025.

Chia-Tung Kuo, Peter B. Walker, Owen Carmichael, and Ian Davidson. Spectral clustering for
medical imaging. In 2014 IEEE International Conference on Data Mining, pp. 887–892, 2014.

Max Dupré la Tour, Monika Henzinger, and David Saulpic. Fully dynamic k-means coreset in
near-optimal update time. In ESA, volume 308 of LIPIcs, pp. 100:1–100:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2024.

Steinar Laenen and He Sun. Dynamic spectral clustering with provable approximation guarantee. In
ICML. OpenReview.net, 2024.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Lionel Martin, Andreas Loukas, and Pierre Vandergheynst. Fast approximate spectral clustering
for dynamic networks. In ICML, volume 80 of Proceedings of Machine Learning Research, pp.
3420–3429. PMLR, 2018.

Huazhong Ning, Wei Xu, Yun Chi, Yihong Gong, and Thomas S. Huang. Incremental spectral
clustering with application to monitoring of evolving blog communities. In SDM, pp. 261–272.
SIAM, 2007.

William M Rand. Objective criteria for the evaluation of clustering methods. Journal of the American
Statistical Association, 66(336):846–850, 1971.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17:395–416, 2007.

Scott White and Padhraic Smyth. A spectral clustering approach to finding communities in graphs.
In 2005 SIAM International Conference on Data Mining (SDM), pp. 274–285, 2005.

Chak-Kuen Wong and Malcolm C. Easton. An efficient method for weighted sampling without
replacement. SIAM Journal on Computing, 9(1):111–113, 1980.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

A FULL CSC ALGORITHM

In this section we give the full details of the algorithm of (Jourdan et al., 2025). We start with some
definitions and notations.

Given a weighted graph G = (V,E,w), the conductance of a set S of vertices is defined as
ΦG(S) ≜ w(E(S, V \ S))/vol(S) where w(E(S, V \ S)) is the total weight of edges crossing the
cut between S and V \S and vol(S) is the total weight of edges incident to S. We define a k-partition
of X to be a collection of sets Π = {πj}kj=1 such that each element of X appears in exactly one
member of Π.
Definition 5 (centroids). Given a k-partition Π = {πj}kj=1 of a set X , a map ϕ : X → H for
some Hilbert space H, and a weight function w : X → R+, define the set of centroids of Π as
cϕw(Π) ≜ {cϕw(πj)}kj=1 where cϕw(πj) =

(∑
x∈πj

w(x)ϕ(x)
)
/
(∑

x∈πj
w(x)

)
.

Definition 6 (Normalised cut objective). Given a graph G = (V,E), the normalised cut problem is
to minimise the average conductance over all k-partitions of the vertices: min

Π={π1,...,πk}
NC(G,Π),

where NC(G,Π) = 1
k

∑k
j=1 ΦG(πj).

Recall that the normalised cut problem and the kernel k-means problem can both be written as the
following trace optimisation problems up to a constant (Dhillon et al., 2004):

Normalised Cut

min Tr(D−1A)− Tr(ZTD− 1
2AD− 1

2Z)

s.t. X ∈ {0, 1}n×k,

X1k = 1n,

Z = D
1
2X (X TDX)− 1

2

Weighted Kernel k-means

min Tr(WK)− Tr(Y TW
1
2KW

1
2Y)

s.t. X ∈ {0, 1}n×k,

X1k = 1n,

Y = W
1
2X (X TWX)− 1

2

(13)

The full Coreset Spectral Clustering algorithm is given in Algorithm 4. Followed by an intuitive
explanation in Figure 3.

Algorithm 4 CORESET SPECTRAL CLUSTERING

1: Input: Graph G = (V,E), k with adjacency matrix AG and degree matrix DG

2: KG,WG ← D−1
G AGD

−1
G , DG

3: V ′,WH ← An ε-coreset for kernel k-means on (V,KG,WG)
4: AH ←WHK(V ′)WH ▷ K(V ′) is the principal submatrix of K with respect to V ′

5: Π← SPECTRALCLUSTERING(AH , k) ▷ k-partition {πj}kj=1

6: Π′ ← partition assigning each x ∈ V ′ to the closest coreset centroid in cϕwH
(Π)

7: return Π′

Now let us state formally the results of (Jourdan et al., 2025).
Theorem 3. Given a graph G = (V,E) and an α-approximation algorithm for the normalised cut
problem with k clusters (13), Algorithm 4 returns a k-partition of V that is a 1+ε

1−εα-approximation to
the optimal normalised cut value for G. The running time of Algorithm 4 is the sum of the running
time of the ε-coreset algorithm, SPECTRALCLUSTERING, and labelling V .

B COMPLEXITY COMPARISON

C SAMPLING TREES

Suppose we have a set of n objects X with associated probability distribution p(x) = l(x)∑
x∈X l(x) for

all x ∈ X , where l : X → R≥0. Further define l(S) =
∑

x∈S l(x) for all S ⊆ X . We refer to l(x)

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Input graph Coreset graph Coreset partition Π

Equivalent
kernel k-means problem

Reweighted
coreset V ′

Implied centers

+ +
+

Construct
coreset

Spectral
clustering

Kernel space

Graph space

Figure 3: Sketch of the Coreset Spectral Clustering Algorithm, taken from (Jourdan et al., 2025).

Algorithms Edge Update Time Query Time for set Y ⊆ V

Ours O(1) O(d2max · k + k4 + vol(Y))
(Laenen & Sun, 2024) O(1) amortised O(n) amortised
Merge&Reduce O(k3) O(k4 + vol(Y))
Naive O(1) amortised O(n · davg · k)
Static O(1) amortised O

(
n ·min{k, davg}

)
Table 2: Comparison of algorithms in terms of edge update and node set query time. We ignore
polylogarithmic factors in n, k. Unless stated otherwise, running times are worst-case. The values
n, dmax, davg, vol(Y) are the number of nodes, maximum degree, average degree and volume of Y
w.r.t the dynamic graph at the time of edge update / node set query. The volume of Y is the sum of
unweighted degrees of all nodes in Y .

as the contribution of x and l(S) as the contribution of S. Sampling trees provide an efficient way to
sample from p(x), and an efficient way to update the contribution of a point (Wong & Easton, 1980).
Suppose we have nested sets S1 ⊂ S2 ⊂ S3 ⊂ · · · ⊂ Sm ⊆ X . For any x ∈ S1, we have that

Pr [x is sampled] =
l(x)

l(X)
=

l(Sm)

l(X)

l(Sm−1)

l(Sm)
. . .

l(x)

l(S1)
. (14)

Following this decomposition, sampling trees maintain the contribution of points in X as leaves and
internal nodes maintain the contribution corresponding to the sum of their children, in the form of a
balanced binary tree.

Let T be a sampling tree for sampling elements of X from distribution p(x). To sample a data point
according to p(x), we start at the root node of T and recursively sample a child node with probability
equal to the child’s contribution divided by the parent’s contribution until we reach a leaf, and return
the element of x stored there. From equation 14, this is equivalent to sampling points according to
p(x) while taking time O(log n).

To update the contribution of a point, the contribution at the leaf is overwritten and the difference is
subtracted from every internal node in the path from the target leaf node to the root. Alternatively, the
contribution of the leaf is overwritten and every internal node in the path to the root recomputes its
contribution as the sum of its children. Both approaches take O(log n) time with the former being
faster and the latter being more numerically stable. As such, sampling and updating a contribution
takes O(log n) time while building a sampling tree from scratch takes time O(n).

D THE DATA STRUCTURE

In this Section we give the pseudocode for our data structure, Data Structure 1.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Data Structure 1: DYNAMIC CSC Data Structure
Fields:

1: T : Global logical timestamp ▷ Used to invalidate stale query data.
2: G : Dynamic graph G = (V,E,w) stored as a hashmap of hashmaps.
3: MaxDeg : Max-heap of node degrees.
4: Tree : Sampling Tree with vertices in G as leaves. Nodes store the following:
5: Node.T : logical timestamp
6: Node.vol : corresponding to

∑
x∈S deg(x) ▷ S is the set of vertices represented by

this node.
7: Node.size : corresponding to |S|
8: Node.fδ : corresponding to

∑
x∈S fδ(x,C) ▷ reset to 0 if Node.T is stale.

9: Node.hb : corresponding to
∑

x∈S hb(x) ▷ Reset to Node.vol if Node.T is stale.
10: Node.hs : corresponding to

∑
x∈S hs(x) ▷ Reset to 0 if Node.T is stale.

11: SeedMap : Hashmap mapping vertices to timestamped seed vertices:
12: t : logical Timestamp
13: seed : seed vertex ▷ reset to the current x∗ if t is stale.
14:

Methods:
15:
16: function INIT(self)
17: self.T← 0
18: self.G← empty graph
19: self.MaxDeg← empty max-heap
20: self.Tree← Empty sampling tree
21: self.SeedMap← Empty HashMap
22:
23: function INSERTEDGE(self, u, v, w)
24: Insert the edge {u, v} with weight w into self.G.
25: Increment the degrees of u and v in self.MaxDeg.
26: Insert u and v at the end of self.T as leaves if not present. Promote leaves to internal

nodes as required. ▷ All Node fields default to 0.
27: Update the leaf values for u and v to respect w being added.
28: Propagate differences in node fields up to the root of self.T.
29:
30: function DELETEEDGE(self, u, v, w)
31: Delete the edge {u, v} with weight w from self.G.
32: Decrement the degrees of u and v in self.MaxDeg.
33: Update the leaf values for u and v to respect w being deleted.
34: Propagate differences in node fields up to the root of self.T.
35: If u becomes disconnected, swap its leaf with the last leaf in self.T, delete from self.G

and self.T, and propagate differences. Demote internal nodes to leaves as necessary. Repeat
for v.

36:
37: function F(Node, σ, x∗, T) ▷ Follows from (5)
38: if Node.T < T then ▷ Forget stale fδs
39: Node.T← T
40: Node.fδ ← 0

41: return Node.size · σ + σ
deg(x∗) · Node.vol− Node.fδ

42:
43: function G(self, Node, σ, x∗, wx∗) ▷ wx∗ corresponds to w(C(x∗))
44: fS ← self.F(Node, σ, x∗, self.T)
45: fX ← self.F(self.Tree.root, σ, x∗, self.T)
46: if Node.T < T then ▷ Forget stale hb and hs

47: Node.T← T
48: Node.hb ← Node.vol
49: Node.hs ← 0

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

50: return fS
fX

+ Node.hb

wx∗ + Node.hs ▷ Follows from (12).

51:
52: function EXTRACTCORESET(self, k, σ, ε)
53: self.T← self.T + 1
54: x∗ ← max of self.MaxDeg
55: self.Repair(x∗, σ, SeedWeight)
56: SeedWeight← {x∗ → self.Tree.root.vol}. ▷ A hashmap from seeds to seed weights

(degrees), initially just mapping x∗ to the volume of G.
57: Draw x ∈ X uniformly at random.
58: self.Repair(x, σ, SeedWeight)
59: for i in 1..k − 1 do
60: x← a sample from the sampling tree self.Tree using self.F, σ and self.T to compute

contributions.
61: Self.Repair(x, σ, SeedWeight)
62: D ← ∅
63: ε1 ← ε/(log ∥X0∥0)1/4

64: N ← O
(

k2 log2(k) log(∥X∥0)
ε4

)
▷ ∥X∥0 is the number of nodes in the graph.

65: for j in 1..N do
66: (x, p) ← a sample and the probability with which it was sampled from Self.Tree

using self.G, σ and Self.T to compute contributions.
67: D ← D ∪ {(x, deg(x)

pN)}
68: X1 ← weighted dataset D. ▷ In practice, we stop after a single round of importance

sampling.
69: i← 1
70: repeat
71: i← i+ 1 and εi ← ε/(log(i) ∥X0∥0)1/4
72: Xi ← IMPORTANCE-SAMPLING(Xi−1, εi) ▷ Algorithm 2
73: until ∥Xi∥0 does not decrease compared to ∥Xi−1∥0
74: return Xi

75:
76: function REPAIR(self, x, σ, x∗ SeedWeight)
77: Lx← leaf of self.Tree corresponding to x ▷ Possible with hashmaps mapping nodes in

self.G to leaves in self.Tree and back.
78: w← self.G.deg(x).
79: OldSeed← Self.SeedMap[x] ▷ Overwrite to x∗ if stale
80: SeedWeight[OldSeed]← SeedWeight[OldSeed] - w ▷ Remove weight from old seed

set
81: SeedWeight[x]← w
82: f ′

δ ← Lx.fδ

83: Lx.fδ ← σ + deg(x)
(

σ
deg(x∗)

)
▷ set f(x,C) to zero by setting fδ to f b, following (5)

84: add (Lx.fδ − f ′
δ) to L.fδ for every internal node L on the path from Lx to the root of

self.T, following 7.
85: Self.SeedMap[x]← x ▷ Also update timestamp
86: OldSeeds← {OldSeed} ▷ Set to keep track of which seeds have changed seed weight
87: for z in {y ∼ x|∆(y, x) < Self.F(Ly, σ, x

∗,Self.T)} do
88: Lz ← leaf of Self.Tree corresponding to z
89: f ′

δ ← Lz.fδ

90: Lz.fδ ← σ + deg(x)
(

σ
deg(x∗)

)
−∆(z, x) ▷ Follows from (6)

91: add (Lz.fδ − f ′
δ) to L.fδ for every internal node L on the path from Lz to the root

of Self.Tree
92: wz ← Self.G.deg(z)
93: OldSeed← Self.SeedMap[z] ▷ Overwrite to x∗ if stale
94: OldSeeds← OldSeeds ∪{OldSeed}
95: SeedWeight[OldSeed]← SeedWeight[OldSeed] - wz

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

96: SeedWeight[x]← SeedWeight[x] + wz

97: Self.SeedMap[z]← x ▷ Also update timestamp
98: for z in {x} ∪ {y ∼ x|∆(y, x) < Self.F(Ly, σ, x

∗,Self.T)} do
99:
100: Lz ← leaf of Self.Tree corresponding to z

101: hb′ ← Lz.h
b ▷ reset to Lz .vol if Lz .T is stale

102: h′
s ← Lz.hs ▷ reset to 0 if stale

103: Lz.h
b ← 0

104: Lz.hs ← deg(z)/SeedWeight[x] ▷ Case 2 of (10)
105: subtract hb′ from L.hb for every node L on the path from Lz to the root
106: add (Lz.hs − h′

s) to L.hs for every node L on the path from Lz to the root
107: for s in OldSeeds\{x∗} do ▷ Go through all seeds sets that have shrunk except C(x∗)
108: for z in {y ∼ s|Self.SeedMap[y]= s} do
109: h′

s ← Lz.hs ▷ Should never be stale
110: Lz.hs ← deg(z)/SeedWeight[s]
111: add (Lz.hs − h′

s) to L.hs for every node L on the path from Lz to the root

E EXPERIMENT WORKLOADS

Our experiments are dividing into real-world and synthetic dynamic graph workloads, which are fully
described in this section.

Real-world workloads. For our real-world workloads, we consider the MNIST and EMNIST
datasets (Lecun et al., 1998; Cohen et al., 2017). For each dataset we define a workload based on
the k-nearest neighbours graph, with k = 300. We begin with an empty graph, and then the nodes
(and associated edges) in the k-nearest neighbour graph are added in batches of 1000. The nodes are
inserted in order of cluster id, and the order within clusters is randomized. After every node has been
inserted, they are removed again in the reverse order to which they were inserted.

Synthetic workloads. Our synthetic workloads are all based on the stochastic block model (SBM)
for generating random graphs. We use two insertion-only workloads which were originally defined
by Laenen and Sun (Laenen & Sun, 2024), and a new fully-dynamic workload.

In the SPLIT_CLUSTERS workload, we initially add a graph drawn from the standard SBM with
the number of clusters set to k = 30, and with n = 300 vertices in each cluster. We include each
edge inside a cluster with probability p = 0.5 and we include edges between clusters with probability
q = (nk)−1. Then, we perform 10 phases in which we select a subset of 300 vertices in the graph,
and add a clique on those vertices so that they effectively become a new cluster. We ensure that sets
of vertices chosen at each update are disjoint. After each phase, the cluster structure is queried from
the dynamic data structure.

In the MERGE_CLUSTERS workload, we again begin with a graph drawn from the standard SBM.
We set the number of clusters to be 20, each containing 100 vertices. We set the SBM parameters to
be p = 0.5, and q = (nk)−1. We then perform 10 phases in which we select two clusters, and add
each edge connecting those clusters with probability 0.95, effectively merging those two clusters into
one larger cluster. After each phase, the cluster structure is queried from the dynamic data structure.

The third synthetic workload, referred to as CHANGE_CLUSTERS is fully-dynamic. We begin with
a graph drawn from the standard SBM, with 10 clusters each containing 1000 nodes. The parameters
of the SBM are p = 0.5 and q = 10−4. We proceed in 5 phases. In each phase, two clusters C1 and
C2 of the currently maintained graph are chosen, and every edge incident to these clusters is removed.
Then, C1 and C2 are each split in half into vertex sets {C1,1, C1,2} and {C2,1, C2,2} and we create
two new clusters: C ′

1 = C1,1 ∪ C2,1 and C ′
2 = C1,2 ∪ C2,2, adding internal and outgoing edges with

probabilities p and q respectively. After each phase, the cluster structure is queried from the dynamic
data structure.

F LLM STATEMENT

LLMs were used to assist with typesetting, code autocomplete and to polish writing.

15

	Introduction
	Our results
	Related work

	Preliminaries
	Static CSC
	Just-in-Time Sampling Trees for Dynamic Graph Kernel Coresets
	Computing f(S,C) Just-In-Time
	Computing g(S,C) Just-In-Time

	Experiments
	Full CSC Algorithm
	Complexity Comparison
	Sampling Trees
	The data structure
	Experiment Workloads
	LLM statement

